Complementary density gradient of Poly(hydroxyethyl methacrylate) and YIGSR selectively guides migration of endotheliocytes.

نویسندگان

  • Tanchen Ren
  • Shan Yu
  • Zhengwei Mao
  • Sergio Enrique Moya
  • Lulu Han
  • Changyou Gao
چکیده

Selective enhancement of directional migration of endotheliocytes (ECs) over vascular smooth muscle cells (SMCs) plays a significant role for the fast endothelialization of blood-contacting implants, in particular for the antirestenosis of vascular stents. Herein, a complementary density gradient of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and YIGSR peptide, a sequence specifically improving the mobility of ECs, was fabricated using a dynamically controlled reaction process. The gradients were visualized by fluorescent labeling and further quantified by X-ray photoelectron spectrometry (XPS) and quartz crystal microbalance with dissipation (QCM-d). The ECs exhibited preferential orientation and enhanced directional migration behavior on the gradient surface toward the region of lower PHEMA density and higher YIGSR density. The migration rate of the ECs was significantly enhanced to 5-fold, whereas the mobility of SMCs was not significantly influenced, leading to faster migration of ECs than SMCs. Therefore, the success of the complementary gradient relies on the appropriate interplay between the PHEMA brushes and the cell-specific ligands, enabling the selective guidance of EC migration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes.

Directional migration of cells mediated by gradient cues in vitro can mimic the corresponding biological events in vivo and thereby provides a way to disclose the cascade responses in tissue regeneration processes and to develop novel criteria for design of tissue-inductive biomaterials. In this work, a molecular weight gradient of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes with a thickn...

متن کامل

Characterization of poly(2-Hydroxyethyl Methacrylate) Scaffolds for Tissue Engineering

Physical properties of scaffolds intended for myocardial tissue regeneration were studied. Mechanical properties and degradation rates were evaluated for degradable scaffolds composed of poly (2-hydroxyethyl methacrylate) (pHEMA) crosslinked with polycaprolactone (PCL). pHEMA copolymerized with tetraethylene glycol as a crosslinker served as a control. Fibroblast cells were used for cytotoxicit...

متن کامل

Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate).

Injectable PEG-analogue hydrogels based on poly(oligoethylene glycol methacrylate) have been developed based on complementary hydrazide and aldehyde reactive linear polymer precursors. These hydrogels display the desired biological properties of PEG, form covalent networks in situ following injection, and are easily modulated for improved control over their functionality and physiochemical prop...

متن کامل

Synthesis and Characterization of Well-Defined Poly(2- hydroxyethyl methacrylate-co-styrene)-graft-poly( - caprolactone) by Sequential Controlled Polymerization

A new graft copolymer, poly(2-hydroxyethyl methacrylate-co-styrene) -graft-poly( -caprolactone), was prepared by combination of reversible addition-fragmentation chain transfer polymerization (RAFT) with coordination-insertion ringopening polymerization (ROP). The copolymerization of styrene (St) and 2-hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2-phenylprop-2-y...

متن کامل

Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2014